On a Quest for Novel Functional Materials: Theory and Computation Guided Discovery and Design

THURSDAY, JANUARY 16 | 4 P.M. | HILL HALL 202

Vladan Stevanovic
Colorado School of Mines

Vladan Stevanovic is a theoretical and computational material scientist. He currently holds an Assistant Professor position in the Department of Metallurgy and Materials Engineering, Colorado School of Mines, with joint appointment at National Renewable Energy Laboratory (NREL). Vladan’s research stands at the intersection between material science, applied physics, large-scale (high-throughput) computations and big data. With the focus on photovoltaic, thermoelectric, power electronics and other energy materials it combines development and application of predictive methods to model relevant properties of real systems to facilitate discovery and design of new materials. Before joining Mines Vladan spent two years as a postdoctoral researcher at NREL and obtained his PhD at the Swiss Federal Institute of Technology in Lausanne (EPFL).

Discovery and design of novel functional materials is critical to a broad range of important applications. However, searching for and designing new materials requires knowledge of a number of relevant properties that are typically not available from experiments for a large number of systems. Hence, computational approaches, which are able to provide access to these properties with the required accuracy can be instrumental in accelerating the pace at which materials discovery and design occurs. In this talk I will present our recent work, which draws on the solid-state and semiconductor theory to develop predictive, computationally tractable and experimentally validated approaches to search for novel functional materials. The application space covers photovoltaic, thermoelectric, and materials for transparent and power electronics. The main focus is on methods to predict charge carrier and heat transport in semiconductors including the defect chemistry and doping tendencies. In many of the application areas our recent developments offer quantitative predictions of relevant properties, which, in turn, allow large-scale calculations and identification of new candidate systems. I will present examples of our material searches and discuss experimental realization of the computationally identified material systems.